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Occupancy Team  
at SDU Center for Energy Informatics 
​ Vision: Sustainable Software-Defined Buildings which are Aware and Collaborate 
with their Occupants 
​ Occupancy Team: 
​ Post Doc Aslak Johansen, PhD Student Emil Holmegaard, PhD Student Fisayo 
Caleb Sangogboye, PhD Student Jakob Hviid, PhD Student Anooshmita Das and 
Software Developer Jens Hjort Schwee. 
​ 25 people in the Center for Energy Informatics. 
​ Current Projects: 
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ODEx: Open Data about Human Behavior 
​ The vision of the project is to co-create new solutions for improving the built 
environment based on open data about human behavior. 
​ Project period 2017-2019.  
​ A primary goal is to foster spinoff projects in collaboration with external stakeholders 
including municipalities and companies. 
Current partners in connected projects include: Odense Municipality, Vemco Group, UC Berkeley, LBNL, GeoFyn, Hesehus, Niko-Servodan, … 
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Open Data for Transparency 
Google Maps Estimates for DOKK1 

DOKK1 Open Data Counts + PLCount + Data Mining 

Why different? 
 - Data issue  
(smartphone biases) 
 - Commercial reasons 
 
Open Data creates 
Transparency! 
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Data-driven Analysis for Multiple Users 

OU44, SDU 

12 

Sensors / Meters: 

� Electricity meters (64) 
� Heat meters (12) 
� Water meters (4) 
� Occupancy counters (17) 
� CO2 (per room) 
� Illuminance (per room) 
� Temperature (per room) 
� Humidity (per room) 
� PIR (per room) 
� Ventilation system (valves, temperatures) 
� Heating system (valves, temperatures) 
� Cameras across all entrances and floors 

Real-time occupancy counters Occupancy counter camera 

Living Lab Building OU44 at SDU Planning 
 

Utilization of Room Capacity 

Building Operation 
 
Electricity Consumption for  
Student Laptop Recharging 
 

Data: 
Room Counts 
Teaching Schedules 

Data: 
Room Counts 
Room Plug-Load Consumption 
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Privacy Sensitive Data 

5 September 2016 

​ Example: Counts for five weekdays for four lecture rooms: 

 
​ Linkage attack based on schedules enable you to quantify attendance to individual 
lectures (Low attendance, do people leave during lecture, are lectures shorter than 
scheduled, …) 

​ Hard for domain expert to spot possible linkage attacks which calls for general 
mechanisms to protect data. 

(a) DCount-SC

(b) DCount-C

Figure 8: Estimated counts over seven days for rooms designed for more than 6 persons.

might look small but with hundreds of students in the
building they quickly sum up. The sum is actually a large
percentage of the overall consumption of the building as all
other systems in the building have been designed to be ex-
tremely energy efficient. This analysis is an important input
to designing, for instance, nudging campaigns for powering
off unused laptops with the screen on and doing energy
budgets based on knowledge of student behavior as numbers
grows and drops over the years. This case illustrates how
the counts produced by DCount can be applied to analyse
electricity consumption over a wide range of rooms which
is one out of many applications of room-level count data
[1], [2].

(a) Classrooms (b) Study zones

Figure 9: Relationship between time spent in rooms by
occupants and plug-load consumption per day.

7. Related Work

Many sensing modalities have been considered for
counting room occupancy. A commonly used sensor for
controlling ventilation rates is a CO

2

sensor. Several studies
have considered sensing occupancy using CO

2

sensors [7],
[8], potentially, in combination with other sensors [15]. An
obvious challenge for utilizing CO

2

sensors is the long

response time resulting in detection delays. Fisk et. al. in [7]
analyse the accuracy of CO

2

based occupancy counts using
44 CO

2

sensors deployed in nine commercial buildings. The
study concludes that the sensors are very prone to failures
and calibration errors. Only a deep integration with the
HVAC system (which is rarely possible) combined with door
and window sensors enables a highly accurate system using
these sensors [9].

Another passive (implicit) occupancy detection method
is Wi-Fi measurements [4], [6], [16], [17]. Christensen et.
al. identified a partial correlation between Wi-Fi enabled
devices connected to existing network infrastructure and
electricity consumption in commercial buildings. They con-
cluded from these results that connected devices can be a
fair metric for estimating occupancy in a building. Schauer
et. al. [16] proposed a method based on Wi-Fi management
frames in which typical devices (smartphones, laptops) with-
out additional software can reliably be detected. Ruiz et.
al. extracted spatio-temporal features from similar measure-
ments of Wi-Fi management frames in order to determine
occupancy density and flow, and to classify behavioral roles
within an hospital building. A challenge with these methods
is that occupants are required to carry dedicated devices.
Kleiminger et al. [17] explored using similar data in a res-
idential setting. Similar challenges could be noticed in [18]
which utilizes Bluetooth beacons for occupancy detection
in buildings. The system proposed in [18] requires active
connection to installed Bluetooth beacons and all gathered
location data from monitored devices are sent to a server
for additional processing. The accuracy recorded was only
based on connected devices not on ground-truth occupancy
count of people in the detected location. Kjærgaard et. al.
[5], compared count data obtained from PIR sensors in a
building with ground-truth data. The results highlight that
PIR sensors are not fit for occupancy counting because of a
RMSE of 21.7. Thermal cameras and 3D counting cameras
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Libraries as Cases in Project 

​ Domain motivation (covered by Anton Helms, Borgernes Hus) 

​ Building type motivation: Diverse mix of room types that generalize  
to other building types. 

​ SDU Library motivation: 
§  New role because of digitalization 
§  The library as a facility for research 
§  Research data management 

5 September 2016 
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Project Plan 

​ Activities 
​ A1 - Methodology for open data about human behavior 
​ A2 - Open data collection by stationary and wearable sensors 

•  Stationary: People counting, WiFi and environmental conditions (Temperature, Humidity, CO2 and Noise) 
•  Wearable: Dedicated research devices with high robustness (GPS, acceleration, Bluetooth positioning) 

​ A3 - Software tools for trajectory and place data about human behaviour 
​ A4 - Domain demonstrations for smart buildings 
​ Activities linked in a number of data explorations: 

5 September 2016 
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Data Exploration at SDU Library 

5 September 2016 
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Technology View 

​ OccuRE: Platform for Analysis of 
Occupancy Data 

5 September 2016 

​ PAD: protecting anonymity in publishing 
building related datasets 

Motion Events

Query: "Presence" for 
"BuildingA/Floor1/RoomB"

Occupancy-driven Thermostat Application

KNX connected PIR sensors

Building 
Operating 
System

OccuRE: Reasoning Engine and OccuRE-enabled Drivers 3

2

Control Logic:

if time_to_occupancy > time_to_heat:
    setpoint = unoccupied_temperature
else:
    setpoint = occupied_temperature

Building Stream 
Configuration

Configuration A:
Info Type: Presence

 Temporal Cov. : Future
Spatial Gran. : Rooms

Temporal Gran. : 5 minutes
1 4

IP connected occupant counters

Occupant counts

Application OccuRE BOS DataflowBuilding Instrumentation

BuildSys ’17, November 8–9, 2017, Del�, Netherlands Jia and Sangogboye et al.

Database

2.	Subsampling
Data pairs

Published database

4.	Microaggregation

Data Publisher

Similarity label3.	Metric	Learning

Data Analyst

1.	Pre-sanitization

Figure 2: PAD diagram: If the purpose of the dataset to
be published is not known prior to publication, then PAD
directly applies microaggregation with an uninformed dis-
tance metric to sanitize the dataset (shown in red dashed ar-
row). Otherwise, PAD processes the data in the following
steps: (1) �e data is �rstly pre-sanitized and formed into
pairs; (2) �e data pairs are subsampled and returned to the
data analyst to solicit their labels on which data pairs are
considered to be similar (�e labels can be assigned man-
ually or automatically using custom programs); (3) PAD
learns a metric from the similarity labels; (4) �e learned
metric is used bymicroaggregation to generate the sanitized
dataset for �nal publication.

data is intended to be used and then proactively adjusting the data
perturbation algorithm accordingly.

If the data is not used for specialized purposes, then PAD directly
applies microaggregation and publishes the database. Otherwise,
the PAD system processes the original database in the following
four steps.

(1) Pre-sanitization. �e objective of this step is to provide a
k-anonymized dataset for the data analyst to label the similarity of
data points. �e similarity labels will be used to learn the purpose
of the data analysis in subsequent steps. At this step the system has
not received any inputs from the data analyst yet. We will therefore
use microaggregation with a simple generic distance metric, e.g.,
Euclidean distance, to pre-sanitize the data.

(2) Subsampling. As the second step, PAD processes the rows
in the pre-sanitized database into pairs and randomly selects some
pairs to be returned to the data analyst, who will then assign a
binary label indicating if the two rows are similar or not in accor-
dance with the particular data purpose to each returned data pair.
Consider, for example, the two pairs of occupancy records depicted
in Figure 3. If the data analyst wants the published dataset to max-
imally retain the information regarding the occupancy pa�erns
during lunch time, then he will assign “dissimilar” to the �rst pair
and “similar” to the second one; however, if the data analyst is inter-
ested in the occupancy pa�erns during the entire day, then the �rst
pair will be labeled as “similar” and the second one as “dissimilar”.
In the case where the desired metric for comparing similarity can
be explicitly de�ned, labeling e�ort can be greatly alleviated by
using computer programs to automatically label similarity of data
points based on the desired metric.

(3) Metric learning. In this step, a distance metric over the
data record is automatically learned from the data pairs and the
similarity relationships indicated by the data analyst.

24:00

1st pair 2nd pair

12:00 16:00 20:000:00 4:00 8:00 24:0012:00 16:00 20:000:00 4:00 8:00

Lunch time

Figure 3: Illustration of determining similarity labels.

(4)Microaggregation. �is step uses the distancemetric learned
from the previous step for microaggregation so that the database
can be sanitized in a way that the information of interest to the
data analyst is maximally retained.

We want to point out that the existence, amount and quality of
similarity labels provided by the data analyst a�ect the usefulness
of the published data; however, the privacy level remains the same
regardless because the dataset is always microaggregated before
publication.

3.2 Distance Metric Learning
We will �rst discuss the algorithm implemented in the distance
metric learning step. Let the original, pre-sanitized, and �nally
published dataset be denoted by X , X̂ , and X̃ , respectively. In the
metric learning step, the data analyst is provided with some data
pairs (x̂k , x̂ j ) (k, j = 1, · · · , |X̂ |) from the pre-sanitized database, and
assigns a similarity label to each of the data pairs. Our objective
is to learn a distance metric d(x ,�) between points x and � so that
“similar” points end up close to each other.

�e idea underlying our metric learning is to parameterize the
distance metric and �nd the parameters that best explain the simi-
larity relationships labeled by the data analyst. To be speci�c, we
consider the distance function of the following form

d(x ,�) = dA(x ,�) =
q
(x � �)TA(x � �) (2)

where A is a semi-de�nite matrix to ensure d(x ,�) to be a well-
de�ned metric that satis�es non-negativity and the triangle in-
equality. �is distance metric, also termed Mahalanobis distance, is
a generalization of Euclidean distance by admi�ing linear scalings
and rotations of the original data space. A is o�en termed as inverse
covariance (IC) matrix. Se�ing A to be the identity matrix I gives
the Euclidean distance; Restricting A to be diagonal corresponds
to learning a metric where the di�erent axes are weighted di�er-
ently. Note that dA(x ,�) =

p
(x � �)TA(x � �) = kA 1

2 x � A
1
2�k2,

and therefore learning a full matrix A is equivalent to �nding a
scaling and rotation of data that replaces each point x with A

1
2 x

and applying the Euclidean distance to the tranformed data.
Suppose each row record has lengthm, i.e., x 2 Rm , and the num-

ber of parameters to be estimated in total ism2. Building-related
datasets are o�en in the form of time series, som is large. However,
we would like to require as minimal a labeling e�ort as possible to
facilitate the use of PAD. Consequently, the main technical chal-
lenge is to learn a distance metric in the “high-dimensional” regime
where the number of parameters to be determined is larger than
the number of labeled samples.

Various distance metric learning techniques [30, 31] have been
proposed in the literature, the core idea behind which is to form an

Kjærgaard et. al.: OccuRE: An Occupancy REasoning Platform for 
Occupancy-Driven Applications. CBSE 2016: 39-48, ACM. 

Ruoxi Jia, Fisayo Caleb Sangogboye, Tianzhen Hong, Costas Spanos, and Mikkel 
Baun Kjærgaard: PAD: Protecting Anonymity in Publishing Building Related Datasets. 
BuildSys 2017, ACM 



SDU CENTER FOR ENERGY INFORMATICS 

ODEx: Open Data about Human Behavior 
​ The vision of the project is to co-create new solutions for improving the built 
environment based on open data about human behavior. 
​ Project period 2017-2019.  
​ A primary goal is to foster spinoff projects in collaboration with external stakeholders 
including municipalities and companies. 

Mikkel Baun Kjærgaard 
Associate Professor 
Mærsk Mc-Kinney Møller Institute 
Center for Energy Informatics 

Jasper Schipperijn 
Associate Professor 
Department of Sports 
Science and Clinical 
Biomechanics 

Bent Ole Gram Mortensen  
Professor 
Department of Law 

Jacob Buur  
Professor  
Department of Design and 
Communication 
SDU Design 

Bertil F. Dorch 
Library Director 
University Library 

Principal Investigator: Participants: 


